Murray's law, the 'Yarrum' optimum, and the hydraulic architecture of compound leaves.

نویسندگان

  • Katherine A McCulloh
  • John S Sperry
  • Frederick C Meinzer
  • Barbara Lachenbruch
  • Cristian Atala
چکیده

There are two optima for maximizing hydraulic conductance per vasculature volume in plants. Murray's law (ML) predicts the optimal conduit taper for a fixed change in conduit number across branch ranks. The opposite, the Yarrum optimum (YO), predicts the optimal change in conduit number for a fixed taper. We derived the solution for YO and then evaluated compliance with both optima within the xylem of compound leaves, where conduits should have a minimal mechanical role. We sampled leaves from temperate ferns, and tropical and temperate angiosperms Leaf vasculature exhibited greater agreement with ML than YO. Of the 14 comparisons in 13 species, 12 conformed to ML. The clear tendency towards ML indicates that taper is optimized for a constrained conduit number. Conduit number may be constrained by leaflet number, safety requirements, and the fact that the number of conduits is established before their diameter during development. Within a leaf, ML compliance requires leaf-specific conductivity to decrease from petiole to petiolule with the decrease in leaf area supplied. A similar scaling applied across species, indicating lower leaf-specific petiole conductivity in smaller leaves. Small leaf size should offset lower conductivity, and petiole conductance (conductivity/length) may be independent of leaf size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Branching Structure of Fluidic Networks with Permeable Walls

Biological and engineering studies of Hess-Murray's law are focused on assemblies of tubes with impermeable walls. Blood vessels and airways have permeable walls to allow the exchange of fluid and other dissolved substances with tissues. Should Hess-Murray's law hold for bifurcating systems in which the walls of the vessels are permeable to fluid? This paper investigates the fluid flow in a por...

متن کامل

Optimal fractal tree-like microchannel networks with slip for laminar-flow-modified Murray’s law

The fractal tree-like branched network is an effective channel design structure to reduce the hydraulic resistance as compared with the conventional parallel channel network. In order for a laminar flow to achieve minimum hydraulic resistance, it is believed that the optimal fractal tree-like channel network obeys the well-accepted Murray's law of βm = N-1/3 (βm is the optimal diameter ratio be...

متن کامل

The evaluation of Murray's law in Psilotum nudum (Psilotaceae), an analogue of ancestral vascular plants.

Previous work has shown that the xylem of seed plants follows Murray's law when conduits do not provide structural support to the plant. Here, compliance with Murray's law was tested in the stem photosynthesizer Psilotum nudum, a seedless vascular plant. Psilotum nudum was chosen because the central stele does not provide structural support, which means that Murray's law is applicable, and beca...

متن کامل

Biomimetic design of microfluidic manifolds based on a generalised Murray's law.

The relationship governing the optimum ratio between the diameters of the parent and daughter branches in vascular systems was first discovered by Murray using the principle of minimum work. This relationship is now known as Murray's law and states that the cube of the diameter of the parent vessel must equal the sum of the cubes of the daughter vessels. For symmetric bifurcations, an important...

متن کامل

Patterns in hydraulic architecture and their implications for transport efficiency.

We evaluated whether patterns in hydraulic architecture increase transport efficiency. Five patterns are identified: area-preserving branching; variable trunk versus twig sap velocity; distally decreasing leaf specific conductivity (K(L)) and conduit diameter; and a decline in leaf specific conductance (k(L)) of the entire plant with maturation. These patterns coexist in innumerable combination...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 184 1  شماره 

صفحات  -

تاریخ انتشار 2009